\begin{tabbing} $\forall$$A$, ${\it A'}$:Type. \\[0ex]strong{-}subtype($A$;${\it A'}$) \\[0ex]$\Rightarrow$ \=($\forall$$B$:($A$$\rightarrow$Type), ${\it eq}$:EqDecider(${\it A'}$), $f$, $g$:$a$:$A$ fp$\rightarrow$ $B$($a$), $x$:${\it A'}$, $P$, $Q$:($a$:$A$$\rightarrow$$B$($a$)$\rightarrow\mathbb{P}$).\+ \\[0ex]($\forall$$x$:$A$, $z$:$B$($x$). $P$($x$,$z$) $\Rightarrow$ $Q$($x$,$z$)) \\[0ex]$\Rightarrow$ $g$ $\subseteq$ $f$ \\[0ex]$\Rightarrow$ ($z$ != $f$($x$) $\Rightarrow$ $P$($x$,$z$)) \\[0ex]$\Rightarrow$ ($z$ != $g$($x$) $\Rightarrow$ $Q$($x$,$z$))) \- \end{tabbing}